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A DYNAMIC MODEL OF A THERMOELASTIC CONTINUOUS MEDIUM 

WITH PRESSURE RELAXATION 

A. M. Iskol'dskii and E. I. Romenskii UDC 531;621.316 

The dynamics of the pulsed heating of a metal to submelting temperatures by an electric 
current was analyzed in [i] on the basis of the Maxwellian model of a nonlinearly elastic 
medium with relaxation of shear stresses [2]. A number of experimental relationships which 
seemed anomalous within the framework of simplified models were explained in this case. In 
[i] it was assumed that bulk deformations take place elastically. 

In the present work a model with relaxation of bulk deformations in a liquid (shear 
stresses are ignored) is formulated which allows one to give a natural interpretation of an 
electrical explosion as a phenomenon arising when the level of specific energy content of the 
medium is inexplicably high. In particular, when a copper conductor is heated in an electric 
circuit providing a rate of temperature rise dT/dt = 1.5.10 ~~ deg/sec, the starting point of 
the electrical explosion comes at an energy Q, = 3.2 kJ/g (T = 6000~ whereas under equilib- 
rium conditions (p = 1013 hPa) boiling starts at Qboil = 1.35 kJ/g (T = 2900~ 

Such a result cannot be explained within the framework of the theory of metastable 
states (the Zel'dovich--Fol'mer theory Qf nucleation, in particular; also see [3]) if plaus- 
ible estimates are used for the work of formation of the critical nucleus and for the value 
of the preexponent in the universal expression for the flux of nuclei in the region Of sizes 
larger than the critical size. 

Allowance for bulk relaxation also seems a necessary expansion of the model with shear 
relaxation for the region of lower (submelting) temperatures. 

Novosibirsk. Translated from Zhurnal Prikladnoi Mekhaniki i Tekhnicheskoi Fiziki, No. 2, 
pp. 132-138, March-April, 1984. Original article submitted December I, 1982. 
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i. Let us consider a continuous medium in which deformations are accompanied only by 
variation of volume. In this case, the stress tensor is described by a scalar -- the pres- 
sure. In the state of thermodynamic equilibrium such a medium is described by two thermo- 
dynamic parameters, such as the density P and the entropy S. 

Now let us assume that an irreversible change in volume, connected with the creation 
and disappearance of defects, can occur in the medium. We introduce the value p, of the 
density which an element of the medium takes after the establishment of thermodynamic equilib- 
rium, it having a density 9 at the given time. We designate the characteristic time of 
establishment of equilibrium as T. Thus, a new thermodynamic variable p, is introduced, and, 
in accordance with this, we have for the internal energy the identity 

dE = --  pdo ~- TdS + qdv, ," ( 1 .  l )  

where v = 1/p i s  t he  s p e c i f i c  vo lume;  v ,  = l / p ,  i s  t he  s p e c i f i c  volume in  t h e  e q u i l i b r i u m  
s t a t e ;  p = --E v i s  t he  p r e s s u r e ;  T = Es i s  t he  t e m p e r a t u r e .  

The e q u a t i o n s  o f  dynamics  o f  such a medium f o l l o w  from the  laws of  c o n s e r v a t i o n  o f  mass ,  
momentum, and e n e r g y ,  and a r e  a l s o  supp lemen ted  by t he  r e l a x a t i o n  e q u a t i o n  

9dui/dt-]-~J/Oxi=:O,s ~-p(Otq/axl + Ou~/Oxz-i-O~,3/O~)= O, (1.2) 

do/dt ~ p(Ou/Oxlq-Ouz/Oxi-l-Oua/O%)=O, d p , / d t = - - o ,  ln(p, /p) /x ,  

where u i  i s  t he  v e l o c i t y  v e c t o r ;  d / d r  = 3 / 3 t  + u a 3 / 3 x a  i s  the  d e r i v a t i v e  a l o n g  the  t r a j e c t o r y  
of  m o t i o n .  

R e l a x a t i o n  o f  the  d e n s i t y  to  i t s  e q u i l i b r i u m  v a l u e  i s  p o s t u l a t e d  i n  the  l a s t  e q u a t i o n  o f  
t he  sy s t em ( 1 . 2 ) .  

We n o t e  t h a t  f o r  the  p a r a m e t e r  ~ = i n  ( p , / p )  we g e t  f rom (1 .2 )  the  r e l a x a t i o n  e q u a t i o n  

d~/dt =: OUl/OX l -1- Ou,,/Ox2 -I- Ou3/Ox,~ -- $#c. 

Now ~ rather than v, characterizes the departure of the medium from thermodynamic equilib- 
rium: E = E(9, S, ~). 

From (1.2) we get the equation of evolution of entropy 

dS ~E~ 
dt - ( e , s~  ) 

Thus, entropy is not conserved here, and the process becomes irreversible. The demand that 
the entropy not decrease imposes restrictions on the dependence of E on ~ in the form of the 
inequality (Es = T > 0, �9 > 0) 

SE~ ~ 0. (1.3) 

The dependence of E on ~ must be chosen in such a way as to describe in some measure the ex- 
perimental facts, which will be discussed below. As the simplest such dependence we take 

~. E (9, S, ~) : E ~ (p, S) + -U M (p. S) (i. 4) 

It is obvious that (1.4) satisfies (1.3) if M(p, S) > 0, and this will be presumed from now 
on. The pressure and temperature calculated from (1.4) have the form 

i 
p = piEo -- piE~ + + piMo~ ~ --  9M~, T = E s = E~ q- -~- MS~ ~. (1 .5 )  

The behavior of metals during pulsed heating is discussed primarily in the present 
article. The model under consideration corresponds to the physical situation in which the 
characteristic time of formation of thermodynamic equilibrium of the atomic configuration, 
connected with the dynamics (creation and mutual orientation) of defects, is considerably 
longer than the phonon time. A nonequilibrium "intermediate" field of deformations, char- 
acterized by the new thermodynamic coordinate ~, arises in this case. In the absence of out- 
side actions the ~ field relaxes, and the energy stored in it is redistributed over the 
equilibrium degrees of freedom. This is a model of a continuous medium if each element of it 
contains a significant number of defects while the size of an element exceeds the distance 
between defects. 
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The model is intended, in particular, for the description of metals in the region of 
submelting temperatures. In this region the main type of defects in thermodynamic equilib- 
rium is vacancies, which occupy up to several percent of the specific volume. The degree of 
defectiveness of a liquid is still higher. 

2. To close the model we must determine the internal energy E(p, S, ~) and the relaxa- 
tion time ~. Let us consider several examples allowing us to obtain preliminary information 
about the modulus M in Eq. (1.4) and about the time T, which can be a function of the state 
of the medium. 

Let us consider the problem of the pulsed heating of an element of the medium. We as- 
sume that the element is small enough that the gradients of all the parameters describing 
the state of the medium can be neglected. Suppose the outside pressure equals zero while the 
temperature within the element varies by an assigned law. This process can be described by 
the equations [we assume that the modulus M in (1.4) does not depend on p or S] 

T(p ,S) - -  T(t) ,p(  9, S, ~)~-0, (2.1) 

dln(p , /~) /d t  ~ --ln(p,/p)/~. 

Here Po is the initial density of the medium at t = 0; T(t) is the assigned function; p = 
p2Ep(P, S, p,) is the pressure determined from (1.5). 

Differentiating the first two equations of (2.1) with respect to t, using the relation 

~-Po~ - - - - M ,  

which follows from (1.5) with M = const, we write the system (2.1) in the form 

d l n p / p o _ _ a i , _ M  ~ .  ( 2 . 2 )  
dt K T ' 

d~ �9 A- - -M ~ (2.3) 
- d ' / - : a T -  K ~ ' 

dS Cp + 
d t -  T 1"-I-aM , (2.4) 

where Cp, a, and K are the heat capacity at constant pressure, the volumetric expansion coef- 
ficient, and the isothermal bulk modulus, respectively, calculated using (i.i) with p, = 
const, i.e., in a medium with an equilibrium concentration of defects. In a first approxima- 
tion they can be considered as corresponding to a defect-free medium. 

Below we shall take T = const and T = const. First we consider the case of "superfast" 
heating of the element, assuming that the heating time is th << T. We designate Tma x = Tt h. 
From Eqs. (2.2) and (2.3), with t = th, we obtain 

~max ~ ~Tmax' ]n Pmax/P0 = --aTma x, 

f r o m  w h i c h  P ,  l t = t h  = Po ,  i . e . ,  f a s t  h e a t i n g  d o e s  n o t  r e s u l t  i n  t h e  c r e a t i o n  o f  d e f e c t s .  

Now we s t o p  t h e  h e a t i n g  i n s t a n t a n e o u s l y ,  t a k i n g  T = 0 ,  and  f o l l o w  t h e  r e l a x a t i o n  p r o -  
c e s s  --  t h e  p r o c e s s  o f  e s t a b l i s h m e n t  o f  t h e  e q u i l i b r i u m  c o n c e n t r a t i o n  o f  d e f e c t s .  

From ( 2 . 2 ) - ( 2 . 4 )  we g e t  

In (P/Po) = In (Pmax/Po) --  ~max ~ (l exp 

')). 
From this we can calculate the volumetric expansion coefficient a' and the heat capacity C'p 
in the process of relaxation. Varying Tma x through variation of the heating rate, ~Tma x = 
(~T)th, we obtain 
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a' 6 in (P/P~ aM (1 ~m~x); ( 2 . 5 )  
- - -  6Tma x - - a + K _ _ ~  -- 

6S a2MKTmax [ 

Thus, expressions are obtained for the corrections to the volumetric expansion coefficient 
and the heat capacity Cp connected with the formation of the equilibrium concentration of de- 
fects during relaxation. It follows from (2.5) and (2.6) that some caution must be displayed 
in interpreting the results of dynamic measurements of that fraction of the thermal expansion 
and heat capacity which is controlled by defects: In static measurements ~ = O, while in 
dynamic ones a nonzero level of nonequilibrium is established. 

Now let us consider the process of heating at a rate of temperature rise T. 

We assume that in a certain interval of variation of the thermodynamic parameters, 
varies little as a function of the state of the medium. In this case, the situation when 
dg/dt in Eq. (2.3) is a small quantity is possible, and then 

-- z~'aK/(K--M). 

For the density and entropy in this approximation we obtain from (2.2) and (2.4) 

dt ' dt 1" ~ 1 +  cp (K- -M)  " 

Eliminating dt from these equations, we have 

(2.7) 

i dv aM dS a2MKT 
v dT - - a + K - - M : a q - A ~ '  T - d - ~ = c p - / K - - M - - c P  +hcp" 

Thus ,  t h e  c o r r e c t i o n s  to  t he  v o l u m e t r i c  t h e r m a l  e x p a n s i o n  c o e f f i c i e n t  and t h e  h e a t  c a p a c i t y  
a r e  o b t a i n e d  f o r  an e s t a b l i s h e d  p r o c e s s  ( d ~ / d t  = 0 ) :  

Ag = aM/(K - -  M); (2.8) 

a2MKT M (2.9) 
kcp--K - - M =  ( c v -  ev)'K"~---M" 

We note that in the given case a nonequilibrium pressure associated with the ~ field is 
formed: From (2.7) and (1.5) we get 

p = po(p , S)--O~T~MK/(K - -M) .  (2.10) 

The second term in this expression is connected with the effective volumetric viscosity. 

Equations (2.8) and (2.9) for the corrections to the volumetric expansion coefficient a 
and the heat capacity Cp under the conditions p = const and ~ = const can be obtained from 
Eqs. (1.5) for p and T with M = const. 

Thus, the problem of pulsed heating in the approximation under consideration makes it 
possible to obtain a description of such characteristics of the medium as the thermal expan- 
sion coefficient, the heat capacity at constant pressure, and the nonequilibrium pressure. 
These characteristics can be used to close the model. We present certain experimental data 
allowing one to estimate the intervals of variation of the parameters (M and ~, in particu- 
lar) needed to close the model. The figures obtained below can be refined when necessary by 
choosing reasonable functional relations M(p, S) and T(p, S). 

To estimate the modulus M for metals in the submelting region one can use data of pre- 
cise measurements, of the temperature dependence of the total thermal expansion, and of that 
fraction of it which is connected only with the increase in the size of the lattice [see Eq. 
(2.5)] or of the analogous relation for the heat capacity of vacancies [see Eq. (2.6)], for 
example. 

In the heating of refractory metals to the melting temperature about half the increment 
of the thermal expansion coefficient is controlled by defects [4, 5]. There are a number of 
methods of determining the required relations. In particular, Z-ray measurements allow one 
to determine directly the characteristic size of the lattice [6]. According to the available 
data for metals in the solid phase, M/(K-- M) = (c2= -- C=o)/C=o < 1 (definitions of c~ and co 
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will be given below). According to the data of various methods for copper in the solid phase 
near the melting temperature, for example, A~/a = M/(K-- M) = 0.1-0.2. 

The relaxation time r is controlled by a whole series of relaxation processes with the 
participation of defects in thermodynamic equilibrium [7]. This time can be considered as 
the "lifetime" of a defect. The quantity T depends essentially on the temperature and can be 
found, for example, from experiments on the hardening of vacancies (in the given model harden- 
ing occurs if the characteristic time of cooling of the specimen is less than the relaxation 
time). For an estimate we can set m >> 10 -6 sec, since, according to experimental data, a 
cooling rate of about 106 deg/sec is sufficient for the density of vacancies at the end of 
the process to differ insignificantly from the initial density. 

Taking m ~ i0 -s sec and M ~ 2.101~ dyn/cm 2 for copper in the submelting region, we have 
an estimate of ~ = 106 P for the effective volumetric viscosity. 

The nonequilibrium pressure [see (2.10)], developing in the process of heating of the 
liquid, results in a shift of the phase trajectory of the heated element into the region of 
stable states (see Fig. I), lying above the curve of the liquid--vapor equilibrium phase 
transition on the p--T diagram. After ~ arrives at the stationary level (2.7), this point 
moves toward the right almost parallel to the temperature axis, owing to the continuing heat- 
ing, until it meets the equilibrium curve. Further heating results in boiling. This aspect 
is well recorded experimentally: A sharp increase in the rate of growth of the transverse 
size of the conductor is observed in x-ray shadow photographs; from the surface of the con- 
ductor emerge streams of high-temperature dense gas which, having overtaken the air-vapor 
boundary which has gone ahead, are revealed in the form of bright regions on photographs made 
with streak cameras and image-converter cameras; electrical measurements show that the pro- 
cess of effective interruption of the current starts at this instant. 

Phase trajectories in the p--T plane of the point corresponding to the surface of the 
conductor are presented in Fig. i: I is the line of the equilibrium liquid-vapor phase 
transition; II is the spinodal; (pcr, Tcr) are the coordinates of the critical point; Qboil 
is the point of the onset of boiling at atmospheric pressure; Q,: and Q,2 are the starting 
points of the electrical explosion; 0 is an unrealized trajectory; 1 is the true trajectory 
for the same heating rate as for the case 0; 2 is the same, but at a higher heating rate. 

Knowing the equation for the equilibrium curve and the position of the starting point 
of the electrical explosion on the temperature (energy) axis, one can determine the ampli- 
tude of the nonequilibrium pressure and, on the basis of (2.10), estimate the effective 
volumetric viscosity of the liquid metal at temperatures exceeding the equilibrium boiling 
temperature. Far from the critical point the equation for the curve of the equilibrium 
liquid-vapor phase transition has the form 

p-p=e--~RT, ( 2 . 1 1 )  

whe re  X i s  t h e  h e a t  o f  t h e  t r a n s i t i o n  w h i l e  p~ i s  d e t e r m i n e d  f r o m  t h e  known s a t u r a t e d  v a p o r  
p r e s s u r e  a t  a f i x e d  t e m p e r a t u r e .  F o r  c o p p e r  a t  T = 2900~ i n  p a r t i c u l a r ,  p = 1013 h P a ,  
T~ = X/R = 36.56"i03~ and p~ ~ 3.35 GPa. 

According to our experimental data for copper at a heating rate dT/dt = (1.5-1.6).10 I~ 
deg/sec, the phase trajectory intersects the line of the equilibrium phase transition when 
the average (radially) value of the internal energy density is Q, = 3.1 • 0.I kJ/g. Experi- 
mental conditions: conductor diameter 0.4 mm, current at the instant of the explosion I, = 
50 kA, voltage on the specimen 13.3 kV (storage capacitance 2.4 pF, circuit inductance 430 
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nH, initial voltage on capacitance 30 kV). The density of the medium at this instant, esti- 
mated from x-ray shadow photographs, is n, = 5.8 • 0.2 g/cm 3. The volumetric thermal expan- 
sion coefficient found from the same photographs and the data of electrical measurements is 
a = (1.4 • 0.I),i0 -~ deg -~. In the conversion from internal energy density to temperature 
we take c = 0.5 J/(g.deg) as the heat capacity of a unit mass. The singular point falls at 
the temperature T, = 6.44.10a~ (actually, the surface temperature is lower [i]). 

On the basis of (2.11) we obtain the pressure estimate 

- -T~/T,  
p, ~ p~e  ~ O.135GPa, 

which, in accordance with the foregoing, should be close to (2.10): 

dT ~MK 
P = P ~  dt K - - M "  

H e n c e ,  ~MK/(K -- M) = 100 c m 2 / s e c ,  and f o r  t h e  e f f e c t i v e  v o l u m e t r i c  k i n e m a t i c  v i s c o s i t y  
= mM (we o b t a i n  an  e x p r e s s i o n  f o r  i t  b e l o w )  we o b t a i n  v = 5 - 1 0 0  c m 2 / s e c ,  w h i l e  f o r  t h e  

d y n a m i c  v i s c o s i t y  q we h a v e  ~ = 3 0 0 - 6 0 0  P ,  r e s p e c t i v e l y  ( h e r e  t h e  f o l l o w i n g  l i m i t s  o f  v a r i a -  
t i o n  of M are presumed: from K = K-- M to M = K-- M). 

From p = p, we get the experimentally verifiable relation (we presume K = K -- M) 

1 ' ~  T /ln(p~/i)~aM]'), (2.i2) 

connecting the position of the starting point of the electrical explosion on the energy axis 
with the heating rate. According to (2.12), under the conditions of [8], where the explosion 
of a conductor 0.31 mm in diameter at a heating rate about five times lower than that just 
discussed was investigated, one can expect a shift of the starting point of the explosion in- 
to the energy region close to Q, = 2.4 kJ/g = 152 kJ/mole. According to the data of [8], it 
falls at Q, = 152 kJ/mole. The agreement in the third figure is accidental, of course. How- 
ever, the estimates for u = 50 cm2/sec and ~ = 300 P are close to the real ones in order of 

magnitude. 

Since the degree of defectiveness of a material increases during melting, it can be ex- 
pected that M = K -- M in the liquid phase. Taking K ~ 1011 cm2/sec 2, we obtain m ~ 5.10 -i~ 
sec, while the characteristic heating time [(i/T)(dT/dt)]-i is considerably longer than m in 

the cases under consideration (mT << i). 

However, ~r ~ 1 in explosions of emission spots on the cathodes of high-current commu- 
tators, in the interaction of beams of energetic particles with the surfaces of metallic 

targets, in experiments with powerful laser beams, etc. 

Under these conditions the transition to a model in local equilibrium with a renormal- 
ized volumetric viscosity coefficient proves incorrect, and the relaxation must be taken in- 

to account as such. 

3. Liquids with relaxing parameters have been analyzed repeatedly. We note [9], for 
example, where the propagation of acoustic waves is investigated, in particular. 

We can show that the model formulated above leads to the same results as in [9]. We as- 
sume that a small disturbance ~p, 6~,, 6S, ~u i is imposed on the steady state of the medium 
pO = const, pO, = pO, S O = const, u i = const. We linearize the system (1.2) with respect to 

the small disturbances. We obtain the system of linear differential equations 

where 

pOdSui/dt ~. aSplaxi = O, d6pldt -~ p~ ~ O6u~lOx2 -]- 08uJOx3) ~ O, 

dSe,/dt = --  (Sp. - -  ~p)/~0, dSS/dt =- O, 

0 0 Op .Op Op 

(3.1) 

For ~$ we obtain the equation 

dS~/dt -~- at3ux/c3xi -~- O6uJOx2 -iv 08u3[ax3 - -  6~ IT~ 
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We initially assume that u ~ = 0 Let the disturbances vary with time by the harmonic law 
e imt. From the equation for ~g we find 

~o~ ~ 60 

and hence, because 8S(xl, x2, x3) = O, 

8p 
6p(xl, x2, xs)= ((_~)~,8 I [ OP'~ ir176176 \ 

Now we seek solutions of the type e {h~x~. 

From the condition of solvability of the system (3.1) with u~ = 0 we obtain the dis- 
persion relation 

Ls -- po k at ]o,s i + io~ ~ (ki + k[ + k~). (3.3) 

One can show that the same equation (3.3) in which m is replaced by ~ + u~ is valid for 
the case of u~ # O. 

Thus, an expression is obtained for the complex speed of sound (3.3) coinciding with the 
equation of [9]. 

Now let us consider the limiting cases for (3.3). We assume that the relaxation time T 
can vary within wide limits, and we fix the frequency m. Let % >> i/u, i.e., the relaxation 
time is long and the medium is "almost elastic." From (3.3) we get 

Op i ap 

w h e r e  ] k [  = = k a l  + kaa  + k a 3 .  The speed of sound coo, defined as 

oo \ ap ]~, s 

corresponds to the speed of sound in a medium without relaxation. 

For T << i/w (a short relaxation time) we have 

o~ 2 = ( @ / @ ) ~ ,  s Ik l  ~" 

The speed of sound Co = /(~P/~0)~,S corresponds to an "instantly relaxing" medium. 

Consequently, 

(ep/e~)p s = - s ( e L  - co~) 

For  t h e  c a s e  o f  s h o r t  r e l a x a t i o n  t i m e s  (~ << l / u ) ,  u s i n g  imP0 + 0 ~ d i v  ~u = 0 ,  we o b t a i n  f r o m  
( 3 . 2 )  

ap p - -  (%0 - -  Co) �9 &v 6u. (3 .4)  

An equation containing the volumetric viscosity has been obtained for the pressure. 

The effective volumetric kinematic viscosity is expressed by the equation [using (1.5) 
with M = const], 

o 2 c a __  ~o [ a p ~  o (3.5) 
~=~ ( ~ -  o ) - - 7 ~ ] ~ , ,  =~ M. 

We note that Eq. (3.4) for the pressure containing the volumetric viscosity (3.5) is 
valid only for processes sufficiently slow compared to the relaxation time T. Consequently, 
the model with Navier--Stokes viscosity determined from (3.5) is inapplicable for rapidly oc- 
curring processes. 

Also significant is the fact that the system of equations (1.2) with density relaxation 
is hyperbolic (all the processes have a finite propagation rate). 
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EQUATIONS OF DISLOCATION PLASTICITY WITH LARGE DEFORMATIONS 

Yu. I. Fadeenko UDC 539.374 

In investigations of the dynamic plasticity the simplest model of the theory of disloca- 
tion, including Orovan's equation 

• ~ bNv, 

the law governing the motion of the dislocations 

v = v(+) 

and the equation of kinetics of dislocations 

(la) 

(lb) 

= N(~), (Ic) 

where y is the shear deformation; T, tangential stress; N, density of dislocations; v, their 
slipping velocity; and b, absolute magnitude of Burgers vector, is often used. It is also 
assumed that all dislocations are mobile and slip with identical velocities. Equation (ic) 
is usually written in the form N = No + A~ s, where s is a quantity of the order of one, and 
the motion is described either by the law of viscous friction 

or by Taylor's empirical formula [I] 

~b = By,  (2a) 

v = v0exp(--%/~ (2b) 

(B is the coefficient of viscous friction). 

This very simple model corresponds to conditions of superbarrier slipping with uniform 
chaoticdistribution of dislocations and can be used to describe small deformations of metals 
with low initial dislocation density. However, it neglects the fact that the uniform dis- 

? 
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